Tourette syndrome in the context of evolution and behavioral ecology



Tourette syndrome, and the closely related spectrum of tic disorders, are inherited neuropsychiatric conditions characterized by the presence of repetitive and stereotyped movements. Tics are elicited by either environmental experiences or internal signals that instruct the basal ganglia to initiate automatic or procedural movements. In most vertebrates the basal ganglia encode instructions for habitually used sequences of motor movements that are essential to survival. Tic disorders may represent evolved phenotypes with a lower threshold for basal ganglia-directed actions. This may have produced a susceptibility to extraneous tics, but also produced fast-acting tactical solutions to immediate physical problems.

During periods of nonstop movement, continual foraging, and sustained vigilance, it may have been advantageous to allow subcortical motor commands to intrude into ongoing motor activities. It is clear that the engrams for individual motor responses held in the basal ganglia are selected by converging cortical and subcortical inputs. This form of convergent action selection results in the selection of the most contextually reinforced actions. Today people with Tourette’s have tics that seem arbitrary and inappropriate; however, this may be due to the vast discrepancies in reinforcement between the ancestral environment and the modern one. In prehistoric environments, the motor behaviors of individuals with tic disorders may have been appropriate in environmental context, and had ecological relevance in survival and self-promotion.